数列极限的定义是什么 求数列极限的方法总结及例题

数列极限的定义是什么

1.是指无限趋近于一个固定的数值。

2.数学名词。在高等数学中,极限是一个重要的概念。

极限可分为数列极限和函数极限.

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,于是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。

就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在Δ的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能。这个概念是成功的。

数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。

函数极限标准定义:设函数f(x),|x|大于某一正数时有定义,若存在常数A,对于任意ε>0,总存在正整数X,使得当x>X时,|f(x)-A|<ε成立,那么称A是函数f(x)在无穷大处的极限。

设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当

|x-xo|<δ时,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。

延伸阅读

数列极限证明全过程

数列极限定义证明步骤证明:对任意的ε>0,解不等式│1/√n│=1/√n<ε,得n>1/ε2,取N=[1/ε2]+1…

1证明步骤

证明:对任意的ε>0,解不等式

│1/√n│=1/√n<ε

得n>1/ε2,取N=[1/ε2]+1。

于是,对任意的ε>0,总存在自然数取N=[1/ε2]+1。

当n>N时,有│1/√n│<ε

故lim(n->∞)(1/√n)=0。

2数列极限

数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。

数列极限定义

定义设为数列{an},a为定数。若对任给的正数ε,总存在正整数N,使得当n>N时有

▏an-a▕<E则称数列{an}收敛于a,定数a称为数列{an}的极限,并记作

若数列{an}没有极限,则称{an}不收敛,或称{an}发散。

等价定义任给ε>0,若在(a-ε,a+ε)之外数列{an}中的项至多只有有限个,则称数列{an}收敛于极限a。

当数列的极限是

有了实数集的基础就可以进入正题——极限。

先说明几个符号的意义

“?”——代表“任何”、“任意”。

“?”——代表“存在”。

为了“线性”书写形式的方便,将采用中括号“[]”表示某些“非线性”书写形式(即利用此将其改变成“线性形式”),如

lim[n→∞] X(n)

∑[i=1,n] X(i)

∫[a,b] f(x)dx

一)数列及其极限的定义

数列是函数的一种特殊形式,即其自变量只取自然数,一般表示为{X(n)},其中n∈N。由于自然数n只可能取无穷大为其极限点,所以数列也只有n趋向于无穷时的极限。

设{X(n)}是一个数列,A是一个实常数。如果对于任意给定的ε>0,存在正整数N,对于任何n>N,成立|X(n) – A|<ε,则称数列{X(n)}收敛于A(或称A是数列{X(n)}的极限)。记为

lim[n→∞] X(n) = A

上面的文字描述可以采用下述符号表述法:

lim[n→∞] X(n) = A ? ?ε>0,?N,?n>N(|X(n)-A|<ε)

数列的这个极限定义形式通常被称为(ε-N)分析描述语言。此类分析描述语言是由柯西和魏尔斯特拉斯发明的。

二)魏尔斯特拉斯定理

单调有界数列必有极限。

证明:

不妨设数列{X(n)}单调增加且有上界。根据确界存在定理,由{X(n)}构成的数集必有上确界A。任意给定ε>0,A-ε必然不是数集{X(n)}的上界,即存在N使得A>X(N)>(A-ε)。由于数列{X(n)}是单调增加的,所以对于任何n>N,成立A>X(n)>(A-ε),即|X(n)-A|<ε。同理可证数列{X(n)}单调减小且有下界的情况。证毕。

三)柯西-康托尔原理(闭区间套定理)

如果{[a(n),b(n)]}构成一个闭区间套,即[a(n),b(n)]?[a(n+1),b(n+1)],且lim[n→∞] (b(n)-a(n)) = 0。则存在唯一实数c属于所有的闭区间[a(n),b(n)],且c是数列{a(n)}和{b(n)}的极限。

证明:

由题设,显然数列{a(n)}和{b(n)}是单调有界数列,则其必有极限分别设为A和B。由于lim[n→∞] (b(n)-a(n)) = B – A = 0,即A = B(设其为c),则

lim[n→∞] a(n) = lim[n→∞] b(n) = c

由于a(n)≤c≤b(n),可见c属于所有闭区间[a(n),b(n)]。证毕。

四)波尔察诺-魏尔斯特拉斯定理

有界数列必有收敛子列。

证明:

设数列{X(n)}有界,于是存在a1和b1成立a1≤X(n)≤b1。等分闭区间[a1,b1]得两个闭区间[a1,(a1+b1)/2]和[(a1+b1)/2,b1],其中至少有一个含数列{X(n)}中无穷多项,记为[a2,b2]。按此过程继续可得一个闭区间套{[an,bn]},显然(bn-an) = (b1-a1)/2^(n-1),即lim[n→∞] (bn-an) = 0。由闭区间套定理可知存在实数c属于所有闭区间[an,bn],且lim[n→∞] an = lim[n→∞] bn = c。

现在构造数列{X(n)}的一个子列。任取数列{X(n)}中的一项X(n1),显然此项必在闭区间[a1,b1]内。由于闭区间[a2,b2]内含有无穷多个数列{X(n)}的项,在其内选一个X(n2)且n2>n1。按此过程继续可得数列{X(n)}的一个子列{X(nk)},其通项X(nk)必在闭区间[ak,bk]内,则有关系

ak≤X(nk)≤bk

由极限的夹逼性可得

lim[n→∞] = c

证毕。

五)柯西收敛原理

先定义基本数列:

如果数列{X(n)}具有如下特性

?ε>0,?N,?n>N∧?m>N(|X(n)-X(m)|<ε)

则称此数列为基本数列。

数列{X(n)}收敛的充分必要条件是它是个基本数列。

证明:

先证必要性。如果数列{X(n)}收敛于A,按收敛定义有

?ε>0,?N,?n>N∧?m>N(|X(n)-A|<ε/2∧|X(m)-A|<ε/2)

则有

|X(n)-X(m)|≤|X(n)-A|+|X(m)-A|<ε

即数列{X(n)}是个基本数列。

再证充分性。如果数列{X(n)}是个基本数列,对于选定的固定值ε,存在N,当m和n都大于N时成立

|X(n)-X(m)|<ε

现再固定m,显见X(n)有界,即数列{X(n)}是个有界数列。由波尔察诺-魏尔斯特拉斯定理可知有界数列{X(n)}必有收敛子列{X(nk)},设其收敛于A,即lim[k→∞] X(nk) = A。

因为{X(n)}是基本数列,故?ε>0,?N1,?n>N1∧?nk>N1(|X(n) – X(nk)|<ε/2)。又由于lim[k→∞] X(nk) = A,则?N2,?nk>N2(|X(nk)-A|<ε/2)。取N=max(N1,N2),当?n>N∧?nk>N时有

|X(n)-A|≤|X(n)-X(nk)|+|X(nk)-A|<ε

即数列{X(n)}收敛(lim[n→∞] X(n) = A)。证毕。

六)实数系基本定理的等价性

前面分别给出了五个实数系基本定理以及它们的证明。从其证明的过程可以发现有下列推导关系

实数连续公理→确界存在定理→魏尔斯特拉斯定理→柯西-康托尔原理(闭区间套定理)→波尔察诺-魏尔斯特拉斯定理→柯西收敛原理

此外,还存在如下的推导关系

柯西收敛原理→柯西-康托尔原理(闭区间套定理)→确界存在定理

由此可见,实数系的五个基本定理是完全等价的。

七)数列极限的性质和四则运算

下面简单罗列一下数列极限的一些性质和运算法则:

1)数列极限的唯一性

2)收敛数列的有界性

3)收敛数列的保序性

4)数列极限的夹逼性

5)数列极限的运算法则

a)lim[n→∞] (a X(n) + b Y(n)) = a lim[n→∞] X(n) + b lim[n→∞] Y(n)

b)lim[n→∞] (X(n) Y(n)) = lim[n→∞] X(n) lim[n→∞] Y(n)

c) 如果lim[n→∞] Y(n) ≠ 0,则lim[n→∞] (X(n)/Y(n)) = lim[n→∞] X(n) / lim[n→∞] Y(n)

版权声明

返回顶部